A NEW ROUTE TO 3-ALKYL-2,5-DI-<u>t</u>-BUTYL-2,4-CYCLOPENTADIENONES

FROM 4-ALKYL-2,6-DI-t-BUTYLPHENOLS¹

A. Nishinaga,* K. Nakamura, and T. Matsuura

Department of Synthetic Chemistry, Faculty of Engineering,

Kyoto University, Kyoto, Japan

Base-catalyzed reaction of 5-acylmethyl-2,5-di- \underline{t} -butyl-4-oxa-2-cyclopentenones selectively derived from 4-alkyl-2,6-di- \underline{t} -butylphenols \underline{via} three steps involving oxygenation, acetylation, and acid-treatment gave 3-alkyl-2,5-di- \underline{t} -butyl-2,4-cyclopentadienones in excellent yield.

Previously, we have reported a one-step method for the synthesis of 3-substituted 2,5-di- \underline{t} -butyl-2,4-cyclopentadienones involving \underline{t} -BuOK-catalyzed oxygenation of 4-aryl-2,6-di- \underline{t} -butyl- and 2,4,6-tri- \underline{t} -butyl- phenols in \underline{t} -BuOH at 70 °C. ^{2,3} This method is based on characteristic reactivity of these phenols that under the reaction conditions they are oxygenated selectively at the ortho position affording epoxy- \underline{o} -quinols, which undergo base-catalyzed intramolecular decomposition to give the cyclopentadienones. ⁴ The method is, therefore, invalid for other 4-alkyl-2,6-di- \underline{t} -butylphenols, because they are always oxygenated only at the para position to give peroxy- \underline{p} -quinols or epoxy- \underline{p} -quinols or epoxy- \underline{p} -quinols \underline{b} which give different products from cyclopentadienones by base-catalyzed reaction. ⁶

We now find that base-catalyzed reaction of 5-acylmethyl-2,5-di- \underline{t} -butyl-4-oxa-2-cyclopentenones $\underline{3}$ gives 3-alkyl-2,5-di- \underline{t} -butyl-2,4-cyclopentadienones $\underline{4}$ in excellent yield. Since cyclopentenones $\underline{3}$ are readily obtained by acid-treatment of peroxy- \underline{p} -quinol acetates $\underline{2}$, the present method provides a new effective route to 3-alkyl-2,5-di- \underline{t} -butyl-2,4-cyclopentadienones from 4-alkyl-2,6-di- \underline{t} -butylphenols.

A solution of equipolar amounts of $\underline{3}$ and \underline{t} -BuOK in \underline{t} -BuOH was heated at 70 °C under nitrogen atmosphere until the reaction was completed. The reaction time required was dependent on the nature of the substituent R in $\underline{3}$ (Table 1). Chromatographic separation (silica gel) of the reac-

$$\frac{i) \ 0_{2}}{ii) \ AcC1}$$

$$\frac{1}{2}$$

$$\frac{2}{2}$$

$$\frac{3}{2}$$

$$\frac{4}{2}$$

$$\frac{4}{2$$

Table 1. Formation of Cyclopentadienones 4 from Base-catalyzed Reaction of 3.a

4	Reaction Time ^b (min)	Yield (%)	M.p.(B.p.) ^C (°C)/mmHg	IR(Nujol) VCO (cm ^{-l})	UV(EtOH) ^λ max ^(ε) (nm)	¹ HNMR(CDC1 ₃), δ (ppm)		
						<u>t</u> -Bu	R	C=CH
<u>4</u> a	40	69 ^d	(85-86)/2	1700	416(410)	1.13, 1.22	2.03 ^f	6.13 ^m
4 ₽	30	96	(78-80)/2	1710	416(414)	1.14, 1.23	1.09 ^g 2.44 ^h	6.26 ⁿ
<u>4</u> ⊊	30	91 ^d	(142-143)/2	1700	416(446)	1.14, 1.22	0.99 ⁱ , 1.42, 2.41 ¹	6.22 ⁿ
<u>4</u> ₫	150	81	65-66	1710 ^e	416(475)	1.14, 1.23	0.97 ^j , 1.88 ^k	6.24 ⁿ
<u>4</u> e	150	91	47-49	1710 ^e	416(483)	1.13, 1.24	1.4-1.9, 3.3-3.7	6.37 ⁿ

^a A solution of $\underline{3}$ (0.4 mmol) in \underline{t} -BuOH (8 ml) containing \underline{t} -BuOK (0.4 mmol) was heated at 70 °C under N₂. The mixture was poured into an ice-cooled aqueous NH₄Cl solution and extracted with pentane. The product $\underline{4}$ was isolated by silica gel chromatography and purified by distillation. ^b Required for completion of the reaction. ^c Distilled at a reduced pressure (2mm Hg) and satisfactory analytical data were obtained: C, \underline{t} 0.3%; H, \underline{t} 0.27%. ^d Isomeric products $\underline{5}\underline{a}$ and $\underline{5}\underline{c}$ were also obtained in 24% and 7% yield, respectively. ^e Nujol paste. ^f d, J = 0.5 Hz. ^g t, J = 7.7 Hz h q, J = 7.7 Hz. ⁱ t, J = 7.5 Hz. ^j d, J = 6.5 Hz. ^k sep, J = 6.5 Hz. ¹ m. ^m q, J = 0.5 Hz. ⁿ broad s.

tion mixture gave cyclopentadienones $\underline{4}$ as orange-red liquids, among which $\underline{4}\underline{4}$ and $\underline{4}\underline{6}$ were crystallized. Analytical and spectral data of $\underline{4}$ (Table 1) are in good agreement with the structure.

In the reaction of $\underline{3}\underline{a}$ and $\underline{3}\underline{c}$, isomeric products $\underline{5}\underline{a}$ and $\underline{5}\underline{c}$ were also obtained in 24% and 7% yield, respectively. The products $\underline{5}$ should result from further reaction of $\underline{4}$ with the base. Actually, when $\underline{4}\underline{a}-\underline{c}$ were treated with \underline{t} -BuOK in \underline{t} -BuOH at 70 °C under nitrogen atmosphere, $\underline{5}\underline{a}-\underline{c}^8$ were obtained quantitatively. Thus, with an excess of the base the reaction of $\underline{3}$ resulted in the predominant formation of $\underline{5}$, except for the cases with $\underline{3}\underline{d}$ and $\underline{3}\underline{c}$ where no isomerization of $\underline{4}$ took

place. These observations indicate that cyclopentadienones $\frac{4}{2}$ having a methyl or methylene group adjacent to the ring at the 3-position are unstable in the presence of a strong base such as $\frac{t}{2}$. BuOK, whereas those with a methine group such as $\frac{3d}{2}$ and $\frac{3e}{2}$ are stable because the isomerization of the latter compounds is sterically hindered. This is implicated in the fact that the base-catalyzed isomerization of $\frac{4e}{2}$ and $\frac{4e}{2}$ gives only $\frac{5e}{2}$ and $\frac{5e}{2}$ but not the other stereo isomer around the $\frac{exo}{2}$ -double bond.

A reasonble mechanism for the formation of $\underline{4}$ involves deprotonation from the methylene group in $\underline{3}$ followed by rearrangement initiated by the resulting carbanion leading to an intermediate $\underline{6}$ as depicted in the following scheme. Interestingly, the intermediate $\underline{6}$ is analogous to the in-

$$\frac{3}{2} \xrightarrow{\text{t-BuOK}} \frac{0}{\text{product}} R \xrightarrow{\text{OHC}} \frac{0}{\text{product}} \xrightarrow{\text{OHC}} \frac{0}{\text{product}} \xrightarrow{\text{CHO}} \frac{4}{\text{product}}$$

termediate $\underline{7}$ (R = substituted phenyl) confirmed for the formation of $\underline{4}$ (R = substituted phenyl) in the base-catalyzed oxygenation of phenols $\underline{1}$ (R = substituted phenyl). Attempts to isolate $\underline{6}$ were, however, unsuccessful.

The base-catalyzed reaction of $\underline{3}$ depended on the nature of solvent and reaction temperature. In N,N-dimethylformamide, even with an equimolar amount of \underline{t} -BuOK, only $\underline{5}\underline{a}$ was obtained (70 °C, 10 min; yield, 99%). In ethanol or tetrahydrofuran, a complicated mixture including small amounts of $\underline{4}\underline{a}$ and $\underline{5}\underline{a}$ was obtained. At a low temperature, the \underline{t} -BuOK catalyzed reaction of $\underline{3}$ resulted in the quantitative formation of bicyclo[3.2.1]-8-oxa-octane-3,6-dione derivatives formed by the Michael addition of a carbanion generated at the acyl group -COR to the enone system in $\underline{3}$, which

will be published elsewhere. The different product formation dependent on the reaction temperature indicates that deprotonation occurs on both sides of the carbonyl group of the acylmethyl group in $\underline{3}$ and that the base-catalyzed ring opening of $\underline{3}$ is the rate determining step in the formation of $\underline{4}$.

References and Notes

- Peroxy Esters. VI. Part V. A. Nishinaga, K. Nakamura, and T. Matsuura, Tetrahedron Lett., 1269 (1980).
- 2) A. Nishinaga, T. Itahara, T. Matsuura, A. Rieker, D. Koch, K. Albert, and P. B. Hitchcock, J. Am. Chem. Soc., 100, 1826 (1978).
- 3) A. Nishinaga, T. Shimizu, and T. Matsuura, J. Org. Chem., 44, 2893 (1979).
- 4) A. Nishinaga and A. Rieker, J. Am. Chem. Soc., 98, 4667 (1976).
- 5) A. Nishinaga, T. Itahara, T. Shimizu, and T. Matsuura, J. Am. Chem. Soc., 100, 1820 (1978).
- 6) A. Nishinaga, T. Itahara, and T. Matsuura, Synthesis, 604 (1976).
- 7) A. Nishinaga, K. Nakamura, A. Rieker, T. Matsuura, D. Koch, and R. Griesshammer, Tetrahedron, 35, 2493 (1979).
- 8) $\frac{5a}{2}$: colorless liquid, b.p. 81-83 °C/5 mm Hg; IR(Film), 1710 cm⁻¹; UV(EtOH), λ_{max} 272 nm (log ϵ , 4.01); HNMR(CDCl₃), δ 0.99 (s, 9H), 1.21 (s, 9H), 7.32 (d,d, 1H, J = 0.8, 0.6 Hz), 2.48 (d,d, 1H, J = 0.8, 0.5 Hz), 5.11 (d,d,d, 1H, J = 1.0, 0.8, 0.8 Hz), 5.30 (d,d,d, 1H, J = 1.0, 0.6, 0.5 Hz). $\frac{5b}{2}$: colorless liquid, b.p. 82-84 °C/2 mm Hg; IR(Film), 1700 cm⁻¹; UV(EtOH), λ_{max} 289 nm (log ϵ , 4.00); HNMR(CDCl₃), δ 0.96 (s, 9H), 1.22 (s, 9H), 7.64 (d, 1H, J = 1.0 Hz), 2.42 (d, 1H, J = 0.8 Hz), 5.57 (d,d,q, 1H, J = 1.0, 0.8, 7.3 Hz), 1.90 (d, 3H, J = 7.3 Hz). $\frac{5c}{2}$: colorless liquid, b.p. 105-106 °C/2 mm Hg; IR(Film), 1695 cm⁻¹; UV(EtOH), λ_{max} 289 nm log ϵ , 4.04); HNMR(CDCl₃), δ 0.96 (s, 9H), 1.22 (s, 9H), 7.61 (d, 1H, J = 1.0 Hz), 2.42 (d, 1H, J = 0.8 Hz), 5.53 (d,d,t, 1H, J = 1.0, 0.8, 7.7 Hz), 0.97 (t, 3H, J = 7.0 Hz), 2.33 (d,q, 2H, J = 7.7, 7.0 Hz). All the compounds $\frac{5}{2}$ gave satisfactory analytical results: C, $\frac{1}{2}$ 0.27%; H, $\frac{1}{2}$ 0.25%. The decoupling technique with HNMR of $\frac{5a}{2}$ confirmed assignment of the chemical shifts of the olefinic protons and their coupling constants. Thus, the signals at δ = 5.11, 5.30, and 7.32 were reasonably assigned for R'(H), H₆, and H₃, respectively. The coupling constants $J_{H_3-H_6}$, $J_{H_3-R'}$, $J_{H_5-H_6}$, $J_{H_5-R'}$, and $J_{H_6-R'}$ were determined as 0.8, 0.6, 0.8, 0.5, and 1.0 Hz, respectively. Coupling constants $J_{H_3-H_6}$ observed for all the other comprunds $\frac{5}{2}$ were 1.0 and 0.8 Hz, respectively. These data are compatible with the structure

(Received in Japan 22 May 1981)

of <u>5</u>.